If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=505
We move all terms to the left:
x^2-(505)=0
a = 1; b = 0; c = -505;
Δ = b2-4ac
Δ = 02-4·1·(-505)
Δ = 2020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2020}=\sqrt{4*505}=\sqrt{4}*\sqrt{505}=2\sqrt{505}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{505}}{2*1}=\frac{0-2\sqrt{505}}{2} =-\frac{2\sqrt{505}}{2} =-\sqrt{505} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{505}}{2*1}=\frac{0+2\sqrt{505}}{2} =\frac{2\sqrt{505}}{2} =\sqrt{505} $
| x+5.8=7.39 | | 12t=-8t+80 | | 24=2a+10 | | -6q+21=-63 | | 5(3c2)-7c=40-2c | | 4+8q=60 | | x/3-5=4)4 | | y−7=15 | | 12t=80-8t | | 4r-41=31 | | l×+6l=8 | | 18+23h= | | −5x2+10x=5 | | 3-2x(x+3)=x-18 | | 4+7p=46 | | t–5.3=14.1 | | -7x=-35+140 | | 6.4x-7.5=37.3 | | 90=x+37 | | I×+6l=8 | | 5x-4=5x-12 | | 3/2p-3=6 | | 4y+2+3y+14=121 | | 0.95=4m-15.05 | | 60+3p=-33 | | 8x-7=9-4x | | 80-5.4x=2.6x | | 3y=3/2-3 | | 5(5x-7)=8(3x-11) | | 11j+5=6j-5. | | 18b−2= | | 8(z-86)=56 |